

Global Funding for Rubber Innovation

Nurturing Ideas for the Rubber Industry Globally

DRY RUBBER PRODUCTS

1. Introduction of Automation to the current processing line

- ☐ There are three common manufacturing methods/processes of dry rubber products which are extrusion, moulding and calendering.
- ☐ Depending on the processes, products, tooling and process designs, they can be very labor-intensive either Pre, During or Post-production.
- ☐ To be competitive, manufacturers need to simplify methods, improving cycle or handling time, reduce wastages, reduce dependence on manual & foreign labour => improve productivity, efficiency, process, cost, quality and also safety.

2. Exploration of new method, parameters and technologies

- Over the years, dry rubber manufacturers in Malaysia has develop and implemented various types of new method, parameters and technologies to enhance and control each aspects of the processing line
- □ Need unconventional perspective to identify new fundamental parameters or methods that can strengthen the manufacturing process of dry rubber in terms of productivity, cost and quality

3. Data Collection and Analysis

- □ Data collection & analytics are basically essential in improving each aspects of dry rubber products manufacturing
- ☐ However, currently, the knowledge for data collection among dry rubber manufacturer is very limited
- Need out of the box outlook to improve data collection by introducing efficient data collection & data analysis system that can identify bottlenecks in each process involves in the dry rubber manufacturing operation, reducing human error

4. Synthetic Rubber

- Most dry rubber products are utilizing Synthetic rather than Natural Rubber
- ☐ Highly dependent on overseas source for polymer and chemicals used
- ☐ Generally, cost being subjected to demand vs supply and Forex

5. Recovery of Heat Energy

- ☐ Heat is used in the dry rubber manufacturing process usually for rubber softening and rubber crosslinking
- ☐ Electricity usually used to heat up the devices for the softening and crosslinking process
- ☐ However, quite often that the heat energy is loss to the surrounding due to installation of weak insulation system => high heat containment leads to bad working environment (hot)
- ☐ Heat loss may be due to workers slow to load the material, leading to prolong curing and possible manufacturing defects => high rejects
- Energy loss => leads to high energy consumption

6. Nanotechnology

- ☐ Currently graphene is widely used in rubber products as filler.
- ☐ It can improve the electrical, thermal, chemical and mechanical properties of rubber products
- New type of nanomaterial to further enhance the properties of rubber products is highly sought

7. Use of Thermoplastic Elastomers (TPEs) for Product Substitutions

- ☐ Generally, most rubber products are thermoset elastomer
- ☐ Once cross-linked, the thermoset elastomer will maintain its shape permanently opposite to thermoplastic where the process is reversible
- ☐ With that, reject cannot be rework in thermoset elastomer cases

ALAYSIAN RUBBER COUNCIL

DOWNSTREAM [DRY RUBBER PRODUCTS]

8. Innovations of New Products

- Epoxidized Natural Rubber (ENR) has not yet been explored
- ☐ Lithium-ion battery made from rubber
- ☐ Generating energy using rubber

9. Products with Green Contents

- ☐ Green materials as raw ingredients
- ☐ Recyclable & Reusable
- ☐ Compliance to SVHC, REACH, ROHS

LATEX-BASED PRODUCTS

ALAYSIAN RUBBER COUNCIL

DOWNSTREAM [LATEX-BASED PRODUCTS]

1. Online hole detection & "hole repair"

- ☐ Currently the glove in-process inspection involves the water leak or air inflation method
- ☐ The process is labour-intensive and slow
- ☐ Only few gloves are inspected for the whole batch. Not all gloves are tested in the batch
- ☐ A system to detect holes online will save time and tests all gloves.
- ☐ Furthermore, if an online method to patch up the holes is available, it will improve the product quality significantly

DOWNSTREAM [LATEX-BASED PRODUCTS]

2. Curing system

- ☐ Generally, for natural rubber & polyisoprene gloves, accelerator & sulphur are used for crosslinking/curing process
- ☐ Due to no functional group at the mainchain molecules, the accelerator-free curing system for natural rubber & polyisoprene cannot be easily achieved
- Residual accelerator in glove may cause skin reactions, such as Type IV allergy
- ☐ It also leads to the formation of nitrosamines, which are suspected to be carcinogenic
- Accelerator is cytotoxic, unable to meet ISO10993 Part 5, which is one of the requirements for in vitro cytotoxicity test for medical device

ALAYSIAN RUBBER COUNCI

DOWNSTREAM [LATEX-BASED PRODUCTS]

3. Powder-free System

- ☐ Coagulant contains power (calcium carbonate) to produce powdered gloves.
- ☐ The powder is removed in post processing followed by chlorination to produce power-free gloves.
- → Alternatively, metal stearates, e.g. stearates of potassium, calcium and zinc are added to the coagulant to replace the powder
- Stearates not good enough for double gloving of surgical gloves due to the tacky surface
- ☐ Former contamination/staining by stearates leads to holes formation
- ☐ Stearates are not suitable for cleanroom gloves due to the particle's formation

LAYSIAN RUBBER COUNCIL

DOWNSTREAM [LATEX-BASED PRODUCTS]

4. Thin Natural Rubber (NR) Examination Gloves

- ☐ Currently, nitrile rubber gloves can be as thin as 0.04mm while only 0.06mm for NR examination gloves
- ☐ NR condoms can be thinner compared to NR gloves due to the symmetrical shape
- ☐ Thinner gloves reduce material consumption and provide good sensitivity to use
- ☐ Thinner NR examination gloves are good for both the manufacturers and users

5. Polymer Coating for Cleanroom Gloves

- Polymer coating is applied to rubber gloves for anti tack and easy donning
- ☐ However, gloves with the current polymer coating may generate fine particles during offline washing.
- ☐ Since cleanroom gloves require extensive offline washing, the current polymer coating is not suitable for the production of cleanroom gloves which require low particle counts

MALAYSIAN RUBBER COUNCIL

DOWNSTREAM [LATEX-BASED PRODUCTS]

6. Efficient Leaching System

- ☐ Leaching is a cleaning process to remove residual non-rubber materials such as chemicals and proteins from the glove using heated water
- ☐ This step is crucial in minimizing the risk of causing skin reactions to the user
- ☐ Leaching can also improve the glove's tensile properties
- Leaching process requires continuous heating and addition of fresh water to maintain the leaching efficiency.
- ☐ A better leaching system could reduce water and energy consumption.

MALAYSIAN RUBBER COUNCIL

DOWNSTREAM [LATEX-BASED PRODUCTS]

7. Energy Recovery System

Energy used at glove manufacturing plant mainly for heating water and drying glove.
Steam, hot water or thermal oil is used as heating media to heat up the water used mainly in leaching.
Boiler consumes natural gas, fuel oil, LPG or biomass to heat up the heating media
Continuous supply of heating media is required to maintain the optimum leaching water temperature
Electricity or natural gas is utilized for generating heat in the drying oven
Both processes of heating water heating and glove consume substantial quantity of energy.
As such, energy cost constitutes about 11% of the total glove production cost.
A cheaper source of energy and efficient utilization of energy is highly desirable.
Besides that, a better insulation system and heat integration or recovery system are also highly appreciated by the industry

ALAYSIAN RUBBER COUNCIL

DOWNSTREAM [LATEX-BASED PRODUCTS]

8. Porous Glove Former Restoration, Former Protection

- ☐ Glove former normally lasts for several months to several years, depending on the glove thickness
- Over time, the former will become porous due to its weak corrosive resistance against alkalis
- ☐ Currently, there is no known method to restore the porous former
- ☐ Cost for former replacement exercise is quite high
- ☐ If porous former can be restored, or good former can be protected from corrosion, these will reduce production cost as well as maintain the glove quality

DOWNSTREAM [LATEX-BASED PRODUCTS]

9. Better Breach Detection

- ☐ This system functions to alert the wearer in case of glove perforations
- ☐ Currently, to detect a glove breach, a darker colour under glove and a brighter colour outer glove are used.
- ☐ Breach will be detected when liquid penetrates through the hole and the colour of the wetted under glove become more visible
- A better breach detection to alert the wearer of glove could improve the safety and thus provide a better protection

DOWNSTREAM [LATEX-BASED PRODUCTS]

10. Chemical Permeation for Personal Protective Equipment (PPE)

- ☐ Majority of rubber gloves (nitrile, polychloroprene and natural rubber) are weak against to the permeation of several chemicals when tested according to EN16523-1.
- These chemicals are:
 - 96% Sulphuric Acid
 - 65% Nitric Acid
 - Tetrahydrofuran
 - Dichloromethane
 - 40% Hydrofluoric Acid
- ☐ A glove with the resistance against the above chemicals is expected to be well received by the user

MALAYSIAN RUBBER COUNCIL

DOWNSTREAM [LATEX-BASED PRODUCTS]

11. Bone Cement (Acrylic Monomer) Resistance

- ☐ Currently, no medical gloves can prevent the permeation of the bone cement
- Normally the bone cement permeates through the glove less than 10 minutes
- ☐ Wearer who is allergic to bone cement will normally wears 2-3 gloves simultaneously or regularly change the glove to prevent contact
- ☐ Regular changing of rubber gloves during a procedure might cause interruption
- ☐ A bone resistant glove will meet the requirement of user

LAYSIAN RUBBER COUNCIL

DOWNSTREAM [LATEX-BASED PRODUCTS]

12. Glove Manufacturing Process Improvements

- To better enhance the through put and production capacity of glove manufacturing process by inserting more automations and new technologies.
 Production of better-quality gloves by reducing human errors and footprint through on-line automated quality inspection
 To reduce the cycle time the manufacturing process by simplifying the manufacturing line by skipping few processes but still producing same quality of rubber gloves
- ☐ Reduce the cost and down time in the manufacturing line by introducing cheaper, lighter and more durable mechanical parts that last longer
- ☐ Further enhancements needed in robotic glove stripping.
- ☐ The automation on "100 piece glove stacking and insertion into the dispenser box and eventually into the carton" needs further fine tuning, to make it more cost competitive.

AYSIAN RUBBER COUNCIL

DOWNSTREAM [LATEX-BASED PRODUCTS]

13. Glove with Super Hydrophobic Surface

- ☐ During a procedure, e.g. stitching, the visibility of the wearer's gloved fingers might be obstructed by liquids such as blood on the surface of glove
- A superhydrophobic glove will repel liquids and keeps the gloved fingers visible
- ☐ Besides that, the transfer of pathogen from surface to surface can also be prevented
- ☐ Therefore, a super hydrophobic glove improves safety and infection control

14. Improve Comfort

- It is common for surgical gloves to be worn for a long period of time.
- ☐ However, this will lead to sweaty hands which can cause discomfort
- ☐ A glove with the ability to remove or reduce sweat of wearer either through absorption or transmission during use is expected to delight the user

ALAYSIAN RUBBER COUNCIL

DOWNSTREAM [LATEX-BASED PRODUCTS]

15. Sustainable or Biodegradable Materials

☐ Bio-monomers for the rubber synthesis, chemicals such as surfactants, curing agents

16. Less Materials

■ Soap-free latex, dispersing agents free compounding ingredients